Battery-powered optogenetic stimulator receives controlling signals from computer in real time through infrared (IR) link. This stimulator can be configured wirelessly to generate desired pattern of stimulation.

Battery-powered optogenetic stimulator
- Only 0.59 g including battery and one light emitter
- Ideal for small laboratory animals (mice, rats, etc.) and songbirds (zebra finches, canaries, etc.)
- Supports up to 4 independently controlled light emitting diodes (LEDs)

Neurologger 2A/2B with integrated 4-channel optogenetic stimulator
- Records brain activity (4 channels up to 33 kHz sampling) together with activation or suppression of up to 4 brain areas
- Designed for use with mice, rats and other laboratory animals

Optogenetic stimulation system
- IR emitter
- Controlling module
- Neurologger with optogenetic stimulation
- Analog/digital input
- USB
- Other equipment

Optogenetic stimulator capabilities

Stimulating capabilities of ultralight and integrated with Neurologger 2A/2B wireless optogenetic stimulators are similar. Their key features are:

- **High illuminating power.** Even with the lightest battery the peak LED input power is ~1 W.
- **Stable light output** (maximal deviation 1.5%). The light output does not degrade with battery discharge. It also does not depend on animal orientation and movements, contrary to systems exploiting energy harvesting.
- **No potentially dangerous high-intensity electromagnetic waves** like in the energy-harvesting systems.
- **Independent control of several stimulators** attached to different animals in one environment.
- **Reliable wireless connection** between stationary controlling module and head-mounted stimulators.
- **Direct transmitter-receiver visibility** is not needed. Digital noise-free signal processing.
- **Stimulating power** is adjusted with 1% step.
- **Continuous and pulse stimulation** is possible. In pulse stimulation ON/OFF periods are adjusted in large ranges and with a small step.
- **Power is adjusted in up to 4 channels individually and wirelessly in each stimulator.**
- **Individual ON/OFF control of up to 4 channels in each stimulator.**
- **Simple control from popular environments** (Matlab, Python, LabView, etc.) through USB serial port emulation.
- **Direct control through analog/digital input** from other equipment.
Maximal duration of experiment with ultralight optogenetic stimulator

Longevity of experiments with batteries of different capacity and weight was estimated for ultralight single-channel optogenetic stimulator in two modes:

- Waiting for incoming commands without stimulation.
- Optogenetic stimulation with 10 ms ON / 90 ms OFF schedule with 25% of maximal output power.

Stimulator consumes 345 μA in waiting mode and on average 5.5 mA in the above-mentioned stimulation mode.

<table>
<thead>
<tr>
<th>Battery capacity (mAh)</th>
<th>Battery weight (g)</th>
<th>Total weight (g)</th>
<th>Duration of waiting mode (days)</th>
<th>Duration of stimulation (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.36</td>
<td>0.59</td>
<td>1.45</td>
<td>2.18</td>
</tr>
<tr>
<td>20</td>
<td>0.63</td>
<td>0.86</td>
<td>2.42</td>
<td>3.64</td>
</tr>
<tr>
<td>40</td>
<td>1.05</td>
<td>1.28</td>
<td>4.83</td>
<td>7.27</td>
</tr>
<tr>
<td>50</td>
<td>1.58</td>
<td>1.81</td>
<td>6.04</td>
<td>9.09</td>
</tr>
</tbody>
</table>

Light output maximal deviation 1.5% in the range of battery voltages from 2.6 V to 4.15 V*

*Minimal battery voltage that is capable to keep stable LED output depends on illumination intensity configured. It is expressed in % of maximal possible output derived from fully charged (up to 4.15 V) lithium-polymeric battery. If LED output is set at 75% of maximal value, the minimal battery voltage allowed for the output stabilization will be 3.76 V. This border is marked by a vertical dashed line. For outputs 50%, 25%, 10% and 5% the minimal voltages will be 3.37, 2.98, 2.75 and 2.67 V respectively. Chart is plotted for blue LED (460 nm, 1W input peak power) powered from a source with the output impedance 577 mΩ.