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ABSTRACT
L1 phase measurements collected by an autonomous, minia-

turized and low cost GPS logging device are the basis for the

navigation approach discussed in the present paper. Form-

ing single differences between two measurements taken by

one moving receiver at two different times allows to achieve

relative precision in the low decimeter range over time in-

tervals of up to several minutes. Neither a second, nearby

base receiver nor any (static) initialization procedures are

required by the method. This fact significantly reduces the

complexity to be handled by the user often operating under

adverse field conditions. The approach is taking advantage

of canceling ambiguities instead of striving for estimating

these unknown quantities every phase measurement is bi-

ased with. The constitutive navigation equations are derived

elaborately and theoretic aspects of various error sources re-

stricting possible processing intervals are discussed in this

paper. A geometric error raising from an offset in the initial

position is analyzed in particular. The results of a static ex-

periment confirm the theoretic considerations. Furthermore,

technical details of the utilized GPS logger are given and

data collected during two flight experiments are validated

and compared with different reference solutions.

INTRODUCTION
Reducing weight, size, power consumption and complex-

ity for the user is the primary focus of today’s mass mar-

ket targeting GPS community. The present approach out-

lines a possibility to expand this idea to scientific appli-

cations where the principal objective is precision augmen-

tation. This goal is striven for by postprocessing raw L1

phase observations recorded by a miniaturized, completely

self contained GPS logging unit.

The proposed approach allows for the precise mea-

surement of dynamic flight maneuvers in order to analyze

the air vehicle’s motion in a flight-mechanical sense. Among

other things this requires position fixes which are precise

relative to the starting point of the maneuver of interest within

the low decimeter range. The maneuvers themselves are

limited in time to a view minutes only. High dynamics de-

mands for raised sampling rates of at least 10 Hz. As minia-

turized air vehicles and even birds are to be measured, the

sensor used must operate completely autonomous and has

to be both lightweight ( ≤ 100 g) and small (≤ 150× 50×
20 mm3). The weight restriction entails low power con-
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sumption for a runtime of up to 50 - 70 hours just as budget

limitations imply the use of low cost sensors. The latter

requirements are readily met by standard single frequency

GPS receiver modules as used in car navigation systems or

latest generation cell phones. Some of these modules out-

put raw data, i.e. pseudorange, carrier phase, Doppler fre-

quency and raw signal strength or SNR values, with up to

10 Hz. Logging these raw (phase) measurements for precise

postprocessing instead of sticking to the code based online

navigation solution qualifies these receiver modules as ap-

propriate sensors for the described flight measurement task.

Note that the online navigation solution is restricted to sam-

pling rates well below the rate the raw measurements are

provided with. Conventional phase based processing tech-

niques rely on the presence of data collected by a nearby

(≤ 10 km) base station and (mostly static) initialization pat-

terns of the roving receiver. Both cannot be provided in the

scope of the current applications: birds neither remain static

nor close to a base station and miniaturized air vehicles can

perform maneuvers such as loops which inevitably cause

signal shadowing resulting in complete loss of lock undo-

ing any kind of initialization. Hence an alternative way to

process the L1 phase measurements with no need for a base

station or an initialization phase is presented in this paper.

The price to be paid for these advantages is a limitation in

processing time to a view minutes. A detailed description

of the theoretic concept is given as well as a practical vali-

dation by various field and flight experiments.

THEORETICAL BACKGROUND
The Observable: L1 Phase Ranges
The present method is based on the L1 phase range observ-

able generated in the phase lock loop (PLL) of a GPS re-

ceiver. This measurement shall briefly be reviewed in this

section: The nominal (constant) frequency f of the L1 car-

rier wave is 1575.42 MHz. Let ϕS (t) [cycles] designate the

phase of the satellite emitted wave as perceived by the re-

ceiver and ϕR(t) [cycles] denote the phase of the (not yet

Doppler compensated) receiver replica signal. With t [s] as

an epoch in GPS system time reckoned from an initial epoch

t0(= 0) when acquiring lock to the respective PRN one can

state:

ϕS (t) = f t− f
ρ(t)

c
−ϕS

0 (t) ϕS
0 (t) = −δS (t) f +ϕS (t0) (1)

ϕR(t) = f t−ϕR
0 (t) ϕR

0 (t) = −δR(t) f +ϕR(t0). (2)

Here, ϕS
0 and ϕR

0 are the satellite and receiver initial phase

biases at t0 afflicted with the respective clock errors δS and

δR [s] (δ > 0 ↔ clock reading ahead of GPS system time).

The symbol ρ [m] is the geometric distance between satel-

lite and receiver; c [m/s] denotes the nominal signal propa-

gation speed in vacuum. The beat phase φRS [cycles] is now

given by

φRS (t) = ϕS (t)−ϕR(t)

= − f
ρ(t)

c
−δRS (t) f +ϕR(t0)−ϕS (t0)

(3)

with the combined satellite and receiver clock error δRS =

δR − δS . Note that due to the initial distance between satel-

lite and receiver ρ(t0), Eq. (3) theoretically yields a large

decimal number for the beat phase φRS (t). However when

acquiring lock to the respective PRN only the fractional part

of this number can be measured, the initial integer num-

ber N of cycles between satellite and receiver is unknown.

Note that this ambiguity is not time dependent as long as the

phase is locked continuously: N � N (t). Hence, to model

the numerical value actually output by the receiver, this un-

known but constant integer term N has to be subtracted from

the right-hand side of Eq. (3). Moreover, to obtain a value

directly corresponding to a geometric range, the result is

multiplied by −λ1 (the L1 wavelength) yielding the (pseudo)

phaserange Φ [m]:

Φ(t) = ρ(t)+ cδRS (t)+λ1

�
ϕS (t0)−ϕR(t0)+N

�
����������������������������������������������������

N′

(4)

Neither the initial satellite nor receiver phase ϕS (t0), ϕR(t0)

are known. Hence the non-integer ambiguity term N′ is in-

troduced as shown in Eq. (4) to finally rewrite for the L1

phaserange:

Φ(t) = ρ(t)+ cδRS (t)+λ1N′ (5)

In literature the non-integer ambiguity term N′ is frequently

replaced by the integer ambiguity N . This is not precise in

a strict sense but the fractional receiver and satellite phase

terms only drop out and a truly integer ambiguity term is

obtained when forming double differences. However, the

non-integer character of the undifferenced phase observa-

tions does play an important role for procedures such as pre-

cise point positioning (Gao 2006). It is important to keep in

mind that the phase observable changes in the same sense as

the C/A code pseudorange (negative doppler) but is signifi-

cantly less noisy.

Basic Concept
The principal idea of the present approach is the fact that

the ambiguity N′ is time-invariant, provided lock of phase.

Hence, differencing phase observations to the same satellite

S across two epochs tb and ti allows for canceling N′:

bi∇Φ = Φi−Φb =
bi∇ρ+ c bi∇δR+λ1����0bi∇N′ (6)

with ∇ denoting single temporal differences. The right hand

side subscript i shall be a short equivalent for the time ar-

gument (ti) during the following derivations. Note that the

satellite clock error ∇δS is neglected in Eq. (6).

The shown way to cancel ambiguities is the background

for a diversity of applications. In tightly coupled GPS/INS

systems time differenced double differences (so called triple

differences across two receivers, two satellites and two epochs)

can support the dynamics estimation for attitude computa-

tion (Farrell 2001). In a similar context, also carrier phases

directly differenced between subsequent epochs can be used

instead of the noisier delta-range measurements to improve

velocity and attitude information without the need for a base

station (Wendel et al. 2003). Triple differences can also be

used for carrier phase cycle slip detection (Kim et al. 2002).
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Further, precise baseline computation between a base and a

roving receiver provided that there are at least 7 satellites

(if only phase data are used) in view is possible with triple

differences (Graas et al. 1995). Time-differences used in a

stand-alone GPS application are used to process static data

for gun-laying applications (Ulmer et al. 1995). This ap-

proach, enhanced by a loop misclosure procedure, can be

applied to static measurements from civil receivers since

selective availability has been switched off (Balard et al.

2006).

Using time differences for processing kinematic data

is an unconventional approach emerged from the need for a

high quality but low effort navigation solution. The naviga-

tion equations are derived in the following.

Navigation Equations
Assume the position xR of the receiver to be known at a

(base) epoch tb. Then one can write for the base vector

pointing from the position at the base epoch to the position

at the epoch of interest ti

bbi = xR(ti)−xR(tb) (7)

Fig. 1 illustrates the geometry of the problem. Besides the

S
S

bib
bt it

be ie

bρ iρ

idx

Figure 1. Basic principle of time differences.

position, the receiver clock error with respect to GPS system

time has to be determined, yielding the combined position

and time (PT) variable:

ξ =
�
xR T
,cδR

�T
(8)

Here the clock error is scaled to range by multiplication with

the signal propagation speed for convenience. Now one can

set up the enhanced base vector

βbi = ξi−ξb (9)

In order to determine βbi, time differences bi∇Φ between

two phase observations at tb and ti as introduced in Eq. (6)

are used. For precise navigation, the phase range, Eq. (5),

has to be enhanced by models for signal delays caused by

ionospheric and tropospheric refraction, �I and �T :

�Φi = �ρi+ cδRi +λ1N′+ �Ti−�Ii (10)

Here the symbol�is introduced to distinguish modeled from

measured values denoted by�. The unknown satellite clock

error can not be modeled and is therefore omitted in Eq. (10).

The geometric range is calculated by

�ρi =
��xS

i −xR
i
�� (11)

where xS
i is the satellite position at the time of signal emis-

sion corresponding to the epoch ti. This position is extracted

from the Ephemeris data of the respective satellite. Now the

time differenced phase observations can be rewritten as

bi∇�Φ = bi∇�ρ+ c bi∇δR− bi∇�I + bi∇�T
= f (ξi,ξb)

(12)

Note that in a strict sense ∇�Φ is not a function of β but of

both the PT solution at the current epoch and the (known)

base epoch. In order to solve for ξi, at least four measure-

ments are required:

bi∇�Φ !
= bi∇�Φ (13)

with

bi∇�Φ = �bi∇�Φ1 bi∇�Φ2 . . . bi∇�Φm
�T

bi∇�Φ = �bi∇�Φ1 bi∇�Φ2 . . . bi∇�Φm
�T m � 4

Just as for standard single point processing, this (overde-

termined) set of equations is solved by the nonlinear least

squares method. For that purpose, the right hand side of

Eq. (13) has to be linearized:

bi∇�Φ(ξi,ξb) = bi∇�Φ�ξi,0,ξb
	
+Hξi,0

Δξi (14)

The linearization point ξi,0 is either the result of the last it-

eration cycle of the current epoch or the final result of the

previous epoch. The Jacobian writes elaborately as

Hξi,0
=

dbi∇�Φ
dξi






ξi,0

=

�
�������

∂bi∇�Φ1

∂xR
i

∂bi∇�Φ1

∂yR
i

∂bi∇�Φ1

∂zR
i

∂bi∇�Φ1

∂
�

cδRi
	

∂bi∇�Φ2

∂xR
i

∂bi∇�Φ2

∂yR
i

∂bi∇�Φ2

∂zR
i

∂bi∇�Φ2

∂(cδR)
...

...
...

...
∂bi∇�Φm

∂xR
i

∂bi∇�Φm

∂yR
i

∂bi∇�Φm

∂zR
i

∂bi∇�Φm

∂
�

cδRi
	

�
��������
ξi,0

(15)

With eqs. (10) and (12) the following relationships hold

∂bi∇�Φ
∂xR

i
≈ ∂�ρi

∂xR
i
= −ei

∂bi∇�Φ
∂
�
cδRi

	 = 1

(16)

where ei is the unit vector pointing from the rover position

at ti to the satellite, compare Fig. 1. Spatial variations of the

atmospheric models are neglected when linearizing as these

effects are compensated for by the iteration. With Eq. (16)

the Jacobian rewrites to

Hξi,0
=

�
�
−e1

i,0
T

1
...

...

−em
i,0

T 1

�
�� (17)
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Now one obtains with least squares for Δξi

Δξi =
�

HT
ξi,0

Hξi,0

�−1
HT
ξi,0

�
bi∇�Φ− bi∇�Φ�ξi,0,ξb

��
(18)

and iteration

ξi,k+1 = ξi,k +Δξi (19)

finally yields ξi. For the sake of clarity the inversion of the

normal equation matrix is stated in Eq. (18). A direct solu-

tion by using e.g. Cholesky decomposition is recommended

for the practical implementation. Note that even so the PT

solution directly drops out of the solution process, ξi is pre-

cise relative to ξb only and its absolute accuracy depends on

the one of ξb itself. Consequently, βbi is the intrinsic solu-

tion of the problem. This will become even more evident in

Eq. (28).

The shown solving procedure minimizes the residuals

ε j between measured and modeled observations in a least

squares sense:

m�
j=1

ε j 2
=min (20)

ε j = bi∇�Φ j− bi∇	Φ j (21)

If the inevitable experimental measurement errors are un-

correlated, have a mean of zero and a constant variance,

the least squares estimate of Δξi has the minimum variance

of all estimates that are linear combinations of the observa-

tions. In this sense it is the optimal solution.

Error Analysis
As indicated in Eq. (10) the phase range model is enhanced

by terms taking into account atmospheric signal propaga-

tion delays. However, these effects cannot be eliminated

completely. The remaining effects ε compose, together with

other contributions, the non-modeled range error χ:

�Φi =
	Φi+χi

χi = −cδSi +Ei+εi+noise
(22)

This error is made up by the scaled satellite clock bias δS ,

the satellite position offset due to uncertainties in the satel-

lite ephemeris E , the described remaining atmospheric de-

lays ε and measurement noise. When forming time differ-

ences this yields

bi∇�Φ = bi∇	Φ+ bi∇χ
bi∇χ = −bi∇δS + bi∇E + bi∇ε+ bi∇noise

(23)

Except for the noise (σ∇noise ≈
√

2σnoise) the range error

components are highly temporally correlated which allows

the following “linearization”:

bi∇χ =


−c

dδS

dt
+

dE
dt
+

dε
dt

�
tb

�
ti− tb

�
+
∂ε

∂xR

����
tb

bbi+∇noise

(24)

The atmospheric error stemming from spatial variations oc-

curs in any kind of differential processing and remains small

with short baseline length. As a matter of fact, the raise of

the noise level can not be avoided but is smaller by a factor

of 1/
√

2 than when working with double differences. How-

ever, the drift terms are the bottleneck problem for the time

difference approach. In order to keep this effect small, pre-

cise correction data are utilized. These data not only de-

crease the absolute range error but also increase its tempo-

ral correlation. Usually only little attention is paid to this

fact which is key for extending the precise processing time

when working with time differences. However, there is yet

another error source affecting the relative precision of the

solution - the bias in ξb from the true position and time. In

order to analyze this effect, Eq. (14) is linearized in both ξi,0
and the true base position and time ξb,0:

bi∇�Φ(ξi,ξb) = bi∇�Φ�ξi,0,ξb,0
�
+Hξi,0

Δξi−Hξb,0
Δξb (25)

with the Jacobian Hξi,0
according to Eq. (17) and Δξb = ξb−

ξb,0. Referring to Eqs. (10), (12) and (17) one gets for the

second Jacobian

Hξb,0
= − ∂

bi∇�Φ(ξi,ξb)

∂ξb

�����
ξb,0

=


��
−e1

b,0
T

1
...

...

−em
b,0

T 1

�
�� (26)

The minus sign is used for convenience only in order to ob-

tain analogy between Hξi,0
and Hξb,0

. Fig. 1 illustrates the

geometry of the unit vectors. The matrices Hξb,0
and Hξi,0

are closely related which allows again to linearize:

Hξb,0
=Hξi,0

+ Ḣξi

�
tb− ti

�
=Hξi,0

+


��
−ė1T

i,0 0
...

...
−ėmT

i,0 0

�
���tb− ti

�
(27)

Note that Eq. (27) only takes into account the changes due

to the time elapsed between base and rover epoch not due

to the motion of the receiver. The former does have an sig-

nificant impact on the unit vectors due to the motion of the

satellites themselves whereas the latter is neglected due to

the far distance between receiver and satellites. Inserting

Eq. (27) in Eq. (25) yields

bi∇�Φ(ξi,ξb) = bi∇�Φ�ξi,0,ξb,0
�
+

+Hξi,0
(Δξi−Δξb)������������������������

Δβbi

+Ḣξi

�
ti− tb

�
Δξb������������������������������������

bi∇χgeo

(28)

The last term of Eq. (28) is unknown and can, in analogy

to ∇χ, Eq. (23), be interpreted as a geometric range error

caused by variable satellite geometry:

bi∇χ j
geo = −ė jT

i Δξb
�
ti− tb

�
bi∇χgeo =

�
bi∇χ1

geo, . . . ,
bi∇χm

geo

�T (29)

Just as the non-modeled range error ∇χ, the geometric range

error causes an error in the relative navigation solution. Fig. 2

aims to illustrate this effect: If the position at tb is afflicted

by an offset Δxb, the vector bbi is first of all translated by
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Δxb as well. This translation causes a shift of xi by Δxb
which is no error as relative precision is yet maintained.

However, just as every other range error, also ∇χgeo causes

a distortion of bbi, indicated by Δbbi in the figure. This does

degrade relative precision. It is interesting to note that the

bxΔ ixΔ

bibΔ

bt itbib
Figure 2. Impact of a bias in the initial epoch’s position on relative

precision.

variation of the satellite geometry over time has virtually

no impact on the relative solution if the initial position and

time ξb is known exactly, Δξb = 0, no matter how long time

intervals are processed.

In order to estimate the impact of the various range

errors on βbi, Eq. (23) is enhanced to

bi∇�Φ j = bi∇�Φ j+ bi∇χ j+ bi∇χ j
geo����������������������������������

bi∇χ j
total

(30)

With Eqs. (24) and (29) it can be seen that the total range

error is a superposition of different random processes. Each

of them has a different degree of temporal autocorrelation.

For instantce the change of the error caused by unprecise

ephemeris is much slower than the change of the measure-

ment noise. As only short time intervals ti− tb are processed,

the slowly changing error contributions can be considered

as systematic but unknown biases in the measurements. In

other terms, the individual range errors bi∇χ j
total can be as-

sumed to be non-ergodic random processes with constant

and equal variance and statistic distribution but a different,

unknown expectation which is growing with time for each

measurement. This fact significantly complicates the esti-

mation of the error in βbi. In the scope of this paper, the

quality of the solution is validated via comparison with ref-

erence solutions. In addition, a simplistic estimation of the

error propagation is provided by referring to the concept of

Dilution Of Precision (DOP) as known from standard single

point processing: Ignoring all systematic errors in the mea-

surements for the lack of better knowledge, a rough estima-

tion of the covariance matrix of the least squares solution is

obtained by

Cβ = σ2

∇�ΦD; D =
�

HT
ξi,0

Hξi,0

�−1
(31)

For the number of measurements exceeding the number of

unknowns, m � n = 4, the variance of the measurements is

estimated from the residuals by

σ2

∇�Φ ≈
	m

j=1 ε
j 2

m−4
(32)

The DOP value referring to position accuracy is defined by

PDOP =


�3

k=1
Dkk (33)

By comparing coefficients an estimate for position quality

is obtained by 
�3

k=1
Cβ,kk = σ∇�Φ ·PDOP (34)

Note that the Jacobian when working with time differences

as indicated in Eq. (17) coincides with the one used when

processing single points. Hence the numerical DOP values

characterizing the quality of a single point solution also hold

for the time difference solution.

IMPLEMENTATION
The algorithm chosen to transform the derived navigation

equations into a tool for processing real world measurement

data is illustrated in Fig. 3. At the beginning of the trajectory

Δ

tb1

tb2

tb3tj =

Figure 3. Realization of the time difference approach for process-

ing kinematic data.

section to be analyzed, a starting point at the base epoch tb1

is determined via code based single point processing. The

position of this point is accurate only to within a few me-

ters and therefore offset from the true track (grey line) by

Δ. All subsequent epochs, ti are processed using time dif-

ferences between ti and tb1 as long as at least 4 common

satellites are available. The resulting track indicated by the

black line is precise relative to the base epoch. If maneuvers

causing loss-of-lock on too many satellites are performed,

indicated here by the dashed red line, processing has to be

aborted. Right after suchlike maneuvers, a new base posi-

tion (and time) at tb2 can be imported from the single point

solution. No re-initialization pattern has to be performed

by the rover but processing can directly be continued rela-

tive to the new base. Such an event will inevitably cause a

gap in the resulting trajectory. In the example case the solu-

tion fails again between the base epoch tb2 and the current

time t j. However, during this time there are enough com-

mon healthy satellites observed at t j−1 and t j to calculate

the baseline between these two points, referred to as “delta

1887
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.



epoch solution” from now on. A base epoch handover pre-

venting a gap in the solution can be realized and processing

is hereupon continued relative to tb3.

The delta epoch solution not only serves for realiz-

ing base handovers. As this solution is calculated over very

short time intervals, all range errors except for measurement

noise virtually vanish, compare Eq. (24). Hence the resid-

ual level, Eq. (20), of such a solution is very low - if there

are no outliers. In reverse, this property permits outlier and

and cycle slip detection. The latter is particularly important

as cycle slips are discontinuities in the phase measurements

caused by a temporary loss of lock in the receiver’s carrier

tracking loop. As phase lock is a prerequisite for cancel-

ing ambiguities, compare Eq. (6), cycle slip detection is im-

portant when working with time differences. An algorithm

based on these facts is currently under development.

As discussed in the above, also non-outlying, healthy

measurements are afflicted by errors ∇χtotal. When work-

ing with the present approach, these errors are growing with

increasing processing time spans. For attenuating the error

drift different measures are taken when implementing the

navigation equations. With Eq. (29) one can see that the

error bi∇χgeo stemming from a bias in the base solution be-

comes maximum if Δξb is collinear with ėi. According to

(Ulmer et al. 1995) ‖ėi‖ does not exceed 0.00019 /s. For a

processing interval of 200 s and a base position bias of 4 m

the resulting range error would be 15 cm in this worst case

scenario. Hence it is important to apply the range correc-

tions used for time differential processing to attenuate error

drift also when calculating the base position via code based

single point processing for absolute error limitation. Tro-

pospheric signal delays are compensated for by the UNB3

model given in (Collins et al. 1996). Ionospheric propa-

gation delays (advances when working with phase obser-

vations) are accounted for by a thin layer model as indi-

cated in the standard literature, e.g. (Hofmann-Wellenhof et

al. 2001). Here, the total electron count (TEC) is com-

puted from ionospheric correction maps provided free of

charge by the Crustal Dynamics Data Information System in

the IONEX format (www.cddis.gsfc.nasa.gov). Ephemeris

error reduction is realized using final ephemeris products

published online by the International GNSS Service (IGS,

http://igscb.jpl.nasa.gov) or directly by the Center of Orbit

Determination in Europe (CODE). Attenuating the range er-

ror resulting from the satellite clock frequency offset, which

integrates to the satellite clock error, is achieved by the use

of 30 s sampled clock correction data published by (AIUB

2007). These high precise data are often used themselves

as a reference to assess the quality of lower sampled clock

products (Montenbruck et al. 2005). As the clock error is

growing faster than the ephemeris error, these corrections

are particularly important when working with time differ-

ences. More details about the effect of the described cor-

rection models on the time difference solution is given by

(Traugott et al. 2008).

PRACTICAL VALIDATION
Static Experiment
The results of a static experiment are discussed in order to

demonstrate the precision achievable by the time difference

approach under very good conditions. Moreover, the effect

of the geometric error stemming from an offset in the ini-

tial base position is analyzed. The test was performed on

June 19, 2006 on a sports field in the north of Munich with

scattered buildings nearby (48◦16′52.3′′ N; 11◦40′30.2′′ E).

The used low cost receiver is a u-Blox TIM-LP single fre-

quency module integrated in an evaluation kit provided by

the manufacturer. Zero baseline tests show the standard de-

viation of the phase measurements of the receiver to be as

low as 0.87 mm (Odijk et al. 2007). For processing, iono-

spheric correction maps (igsg0190.06i), precise ephemeris

(COD13584.EPH) and clock corrections (COD13584.CLK)

are used. A time interval of 5 min is processed, which is sig-

nificantly longer than the typical intervals to be analyzed for

flight measurements. The bold red line of the upper plot of

Fig. 4 shows the error drift during this time interval, i.e. the

offset of the static relative solution from zero. Good PDOP

vales of about 2.1, see lower plot, limit the error to below

3 dm. Besides the error, the estimate of the error is illus-

trated by the upper plot of Fig. 4: The lowest, dashed green

line is the root mean square of the phase range residuals,

the light blue line right above is the estimate of the standard

deviation of the measurements, compare Eq. (32). Scaling

with PDOP yields the 3D position error estimate as given by

Eq. (34). Considering the simplifications made for calculat-

ing this estimate indicated by the bold, dotted, grey line, it

matches the actual error well. However, one has to be aware

that the quality of the error estimate depends on the num-

ber of used satellite and will be meaningless for the case of

only four used satellites, m = n = 4. The impact of a bias
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Figure 4. Static test: 3D error with quality assessment.

in the base position was discussed theoretically by Eqs. (25)

through (29) and illustrated by Fig. 2. This effect is vali-

dated by adding an offset vector Δxb with random direction

but defined length to the best estimate of the initial solution
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as used above. The results are shown by Fig. 5: One can

clearly see a (linear) relationship between the offset in the

base position and the growing drift in the time difference

solution. These results coincide well with Eq. (29) and un-

derline the need for a good estimate of the base position and

time solution. However, the results of this static test also
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Figure 5. Static test: impact of a bias in the base position Δxb on

relative precision.

show that the accuracy of the time difference solution ob-

tained when applying all mentioned corrections stays in the

low decimeter (or even centimeter) range depending on the

time spans to be analyzed.

Dynamic Flight Experiments
Hardware. The tests described in the remainder were per-

formed using the modified miniaturized GPS datalogger ”GiPSy”

from TechnoSmArt, Rome, Italy, depicted in Fig. 6. The

Figure 6. Miniaturized GPS datalogger “GiPSy” (www.techno

smart.eu) with 25×25 mm2 patch antenna attached.

modifications include replacement of the standard GPS mod-

ule LEA-4H with the module LEA-4T (www.u-blox.com),

capable to provide raw GPS data, and exploiting signals

from a 25 × 25 × 4 mm3 passive patch antenna placed on

35× 35 mm2 ground plate. Non processed raw data with

a sampling rate of up to 10 Hz suitable for off-line analy-

sis can be logged within the 8 MB internal flash memory

(approximately 40 min of recording at 10 Hz). The qual-

ity of the raw data is expected to be comparable to those of

the TIM-LP receiver used for the static test. All data can

be downloaded to the PC via USB using a dedicated soft-

ware. An inverted connector cable also allows the direct

communication with the GPS module via other programs

such as u-Blox u-Center and the totally free setting of all

the module’s parameters. The volume of GiPSy is as low as

44×21×4 mm3 at a weight of 4.25 g only without battery.

Adding the patch antenna (14.15 g) and a 320 mAh 3.7 V

lithium-polymeric battery (7.1 g) increased weight of the

construction up to 25.5 g. The power consumption of GiPSy

is approximately 40 mA. The available logging memory is

extended by connecting an external serial datalogger. The

schematics of this logger is similar to the digital part of the

Neurologger, described in (Vyssotski et al. 2006). The log-

ger utilizes Secure Digital (SD) memory card with the ca-

pacity up to 2 GB as data storage media. For the present

experiments a 1 GB memory card was used. The volume

of the serial data logger is 50× 36× 5 mm3, its weight is

6 g and its power consumption is 6.7 mA. 1 GB of memory

is sufficient to store 10 Hz raw GPS data during 5.3 days

approximately.

Flight Test with Glider Plane. IDAFLIEG, the um-

brella organization of the German academic aviation asso-

ciations, arranges an annual meeting in order to analyze the

flight characteristics and aerodynamic parameters of latest

generation high performance glider planes. In this context

the precise measurement of flight maneuvers of the tested

candidate planes is required in conjunction with high fidelity

airdata. For this purpose, the candidate is accompanied by

the reference glider DG 300/17 operated by the German

Aerospace Center (DLR). This glider is equipped with high

end measurement equipment from the Technische Univer-

sität Carolo-Wilhelmina zu Braunschweig; a dual frequency

Novatel OEMV receiver, precise air pressure measurement

devices and a Litef inertial measurement unit are provided

in conjunction with a Novatel DL-V3 (P)DGPS ground sta-

tion. A photo of the flight test scenario is given by Fig. 7.

The maneuvers of interest for the investigations are mostly

Figure 7. Glider test: test environment at IDAFLIEG summer

meeting 2008, Aalen-Elchingen, Germany. Reference

plane DG 300/17 (to the left) with candidate plane Ven-

tus 2cxa.
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limited to short time intervals of approximately 2 min. Their

analysis requires, among other things, the precise trajectory

of both reference and candidate plane, with respect to a de-

fined starting point. The time difference approach is pro-

posed as a simple, straight forward option to provide this

information. In order to firstly evaluate this possibility, the

GPS logger GiPSy was placed on the instrument panel of the

reference plane during a flight on August 21, 2008, start-

ing from the airfield Aalen-Elchingen, Germany. Due to

the mostly steady flight of the glider, the data quality was

expected to be very good. However, frequent radio com-

munication is identified as a possible reason for phase lock

problems occurring simultaneously on all channels during

wide ranges of the logged data. This problem was not ob-

served in the data recorded by a second, identical receiver

mounted in the candidate plane farther away from the ra-

dio. Hence the problem is likely to be solved by altering

the position of the logger during future tests. For evalua-

tion purposes, an unspoiled 3 min interval while towing the

glider to the final flight level is chosen. Fig. 8 shows the

corresponding vertical profile as obtained by processing the

10 Hz data via time differences. As for the static test, iono-
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Figure 8. Glider test: 10 Hz sampled vertical profile of a 3 min

flight section; total interval (to the left) and zoomed sec-

tion.

spheric correction maps, precise ephemeris and 30 s sam-

pled clock corrections were utilized. The estimated quality

of the solution is illustrated by Fig. 9. 9 satellites yielding

a PDOP of approximately 2.0 are tracked from which none

is affected by a loss-of-lock event according to the corre-

sponding indicator flag provided by the LEA-4T module.

The resulting phase range residual level is indicated by the

lowest, green line depicted in the upper plot of the figure.

An estimate of the standard deviation of the measurements

is given by the light blue line right above, compare Eq. (33).

Following Eq. (34), the 3D position error is estimated to

stay below 15 cm, dashed, grey line. Considering the very

low residual level and the high number of used satellites,

the reliability of this estimate is comparable to the static test

described in the above. In order to validate the time differ-

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

[m
]

3D position error estimate
SD(Phi_obs)
RMS(Phi_obs - Phi_comp)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

tau [s]

[-]

number of satellites
PDOP

Figure 9. Glider test: quality analysis of the time difference solu-

tion.

ence results, an integrated GNSS/INS solution is addressed.

This solution evaluates the reference INS and GNSS data

from the DG 300/17 with the TriPos software package of

the Institute of Flight Guidance of the Technische Univer-

sität Braunschweig. It is a highly flexible research software

built on object orientated techniques. It can be configured

flexibly to various setups including free combinations of fil-

ters, aiding techniques, filter models and filter types. This

software is used to process different setups of the recorded

flight test data. All processing is carried out in real-time

configurations and with the filters mentioned. More details

concerning the method can be found in (Becker et al. 2007).

Due to time constraints, only a preliminary TriPos solution

directly calculated on the test site right after the flight ex-

periments was available in the scope of this paper. The 3D

deviation between the results found by the time difference

method and the INS/GNSS solution is indicated by Fig. 10,

bold red line. In addition, the components of this deviation

in cartesian WGS-84 coordinates are plotted. As the latter

approach provides absolute accuracy, the position offset of

the two solutions at the initial epoch tau = 0 s (i.e. at tb) is

eliminated and only the relative deviation of the two results

with respect to tb is considered. With a maximum devia-

tion of 38 cm this comparison confirms the quality of the

results found by utilizing time differences of phase observa-

tions collected by low cost receivers.

Flight Test with Acrobatic Plane The results of a

further flight test measured with the GPS logger “GiPSy”

and processed via time differences shall be discussed in the

remaining section. The flight was performed by the acro-

batic plane Mü30 “Schlacro” developed and built by the

academic aviation association AKAFLIEG of TU München.

The receiver was mounted on the outer left wing tip of the

aircraft, as illustrated by Fig. 11. The 10 Hz phase data

collected during a S-sequence maneuver flown close to the

airfield Fürstenfledbruck, Germany, on August 15, 2008,

is analyzed. The 2D trajectory and the vertical profile of
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Figure 10. Glider test: comparison of the time difference method

with a tightly coupled INS/GPS solution (courtesy

of the Institut für Flugführung, Technische Universiät

Braunschweig).

GPS logger

Figure 11. Mü30 flight test: Aircraft Mü30 “Schlacro” with GPS

logger “GiPSy” mounted on left wing tip.

the maneuver is given by Fig. 12. When processing, pre-

cise ephemeris (COD14794.EPH), high rate clock solutions

(COD14794.CLK) and ionospheric correction maps (igsg1360.08i)

are used. The quality of the collected phase measurements

is good. No loss of phase lock is indicated by the receiver

generated LLI flags for the 7 used PRN, compare Fig. 13

during the maneuver. The corresponding root mean square

of the C/N0 values yields 48.1 dBHz. As a consequence,

the residual level and the estimate of the measurement stan-

dard deviation dropping out from the least squares solver

are very low, see light green and blue lines in the upper plot

of Fig. 14. However, likely due to the bank angle occur-

ring during the maneuver, the satellite geometry is worse

compared to the glider test and results in (still good) PDOP

values of up to 4.4, lower plot of the figure. These val-

ues are combined to the 3D error estimate, Eq. (34), in-

dicated by the bold grey line of the upper plot of Fig. 14.

The precision is estimated to be better than 17 cm. For val-
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(a) 2D trajectory. (1) Start of precise relative processing; (2) end of precise

relative processing.
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Figure 12. Mü30 flight test: flight trajectory during S-sequence

maneuver.

idation purposes, a second receiver (u-Blox TIM-LP) was

mounted close to the airfield serving as a base station for

RTK processing and static initialization was provided. The

fixed solution is computed in a differential (RTK) mode us-

ing the data of the base receiver. The double-differenced

phase and code data of both receivers are processed using

inhouse Kalman filter software of the Department of Earth

Observation & Space Systems of Delft University of Tech-

nology. In this Kalman filter the (float) L1 ambiguities are

kept constant but no constraints are imposed to the dynamics

of the rover coordinates. The software automatically detects

for cycle slips and outliers in the data and in case a cycle slip

is identified the ambiguity state vector is adapted for this.

For this flight test, using data of 8 satellites, it turned out that

after about 3 min the float ambiguity solution had converged

sufficiently such that the integer values could be estimated

by means of the LAMBDA method (Teunissen 1994). Af-

ter checking whether these integer ambiguities would pass

the Ratio Test with fixed failure rate (Verhagen and Teunis-
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Figure 14. Mü30 flight test: quality analysis of the time difference

solution.

sen 2006), the ambiguity-fixed solution for the rover posi-

tion was computed. One cycle slip was detected 21 s after

the beginning of the maneuver on PRN 4 (which was ex-

cluded for time difference processing). It is well worth to

note that aside from serving as a validation of the time dif-

ference method, the RTK solution also demonstrates suc-

cessful ambiguity resolution when processing data of truly

low cost receivers collected in highly dynamic applications.

The deviation of the obtained results from the time differ-

ence solution are shown by Fig. 15. The relative error com-

ponents in local tangent coordinates do not exhibit a special

trend to the hight direction and the absolute value of the 3D

relative offset stays below 13 cm (again, the initial offset

has been eliminated). This result confirms the high preci-

sion achievable by time differences.
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Figure 15. Mü30 flight test: comparison of the time difference

method with a RTK solution generated by DEOS of

TU Delft.

CONCLUSIONS AND OUTLOOK
Carrier phase time differences are used in a diversity of ap-

plications and recently also gain importance in safety criti-

cal applications such as receiver autonomous integrity mon-

itoring for aviation applications (Walter et al. 2008). A

method to utilize the fact of canceling ambiguities as a stand-

alone possibility to precisely process kinematic measure-

ments over time spans of several minutes has been devel-

oped for flight measurement applications and was presented

within this paper. The navigation equations underlying this

approach were derived and theoretical aspects of various er-

ror sources were reflected including an estimation of their

impact on the final base vector precision. The practical val-

idation of static data gathered under favorable conditions

confirmed that the temporal correlation of the remaining

range errors is high. This allowed for processing time spans

of up to 5 min with relative aberrations below 30 cm. More-

over, the test showed that the derived error estimate princi-

pally is a suitable means to assess the quality of the navi-

gation solution. The impact of position biases of the base

epoch was also demonstrated with the static data. Such

offsets cause an additional “geometric” range error signif-

icantly distorting the baseline when exceeding 5 to 10 m.

Applying the correction data used to attenuate the error drift

also when calculating the initial position via code based sin-

gle point processing is a suitable means to overcome this

problem. Dynamic flight test results performed with a com-

pletely self-contained GPS logging device featuring a mass-

market L1 single frequency GPS module were presented.

The device offers the possibility to save raw measurements

with sampling rates of up to 10 Hz at a weight of 25.5 g

only. In conjunction with its small size, this device allows

to collect raw data also in very difficult field conditions,

e.g. precise bird tracking. Data gathered during a test flight

with a glider plane underlined the capability of the time

difference method to achieve relative precision in the low

decimeter range basing on data from the small logging de-

vice. Comparison with an integrated INS/GNSS differen-
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tial solution confirmed this statement as maximum devia-

tion between both solutions did not exceed 38 cm during a

3 min processing interval. The analysis of data collected

during a 110 s lasting dynamic maneuver performed by an

acrobatic propeller plane further pointed out the potential

of the approach. The relative deviation from a fixed am-

biguity RTK reference solution stayed below 13 cm during

the whole maneuver. These results can possibly be further

improved by introducing a weighting factor based either on

satellite elevation or SNR values in the least squares solving

procedure. Moreover, algorithms taking into account mea-

surement error cross-correlations and systematic biases can

possibly also advance the results. Using the relative solu-

tion calculated between subsequent epochs for outlier and

cycle slip detection was briefly discussed but is yet to be

further developed for advancing the time difference method

- a method which is both unconventional and easy to apply

in the field: For a user who is well aware of the pitfalls of

raw phase data processing, neither a second, nearby base

station along with (static) initialization procedures nor high

quality receiver technology is required to achieve a truly

phase based, stand-alone navigation solution precise to the

low decimeter range.
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