стами гипоталамической и ретикулярной активности. Но каков механизм включения этой активности?

С этим вопросом мы подходим к проблеме кортикофугальных воздействий на подкорковые аппараты. В самом деле, мы испытываем чувства радости при виде какого-либо знакомого и приятного нам человека потому, что сначала узнаем этого человека, выделяем его из сотни подобных ему, и только затем включаются эмоциональные аппараты определенного качества. Следовательно, любая реакция мозга в своей начальной части включает в себя по крайней мере три решающих стадии.

1. Стадия синтеза всех афферентных воздействий на кору мозга, в том числе и всех тех восходящих воздействий, которые создались в результате субкортикального анализа исходного возбуждения внешнего мира.

2. Стадия включения субкортикальных компонентов определенного биологического акта, адекватного всей данной окружающей обстановке.

3. Стадия избирательного восходящего субкортикофугального воздействия на обширные области коры головного мозга, где происходит уже конечная интеграция нервных процессов, предшествующая формированию поведенческого акта в целом.

Интерес состоит в том, что все эти три стадии, как показывает эксперимент, и сие время развиваясь в досках, нечто это есть тот реальный динамик в работе мозга, понимание которого составляет нашу общий цели.

Несколько лет назад была предложена концепция для понимания общей физиологической архитектуры условного рефлекса (П. К. Анохин). Это архитектура включает в себя несколько решающих звеньев, первым и важнейшим из которых является афферентный синтез, благодаря которому определяется как формирование именно этого поведенческого акта, так и контроль его эффективности с помощью обратной афферентации.

Изложенные данные и их анализ были посвящены разбору нейрофизиологических механизмов, именно стадии афферентного синтеза. Последние годы дают нам более и более уточняющие результаты о необъятных горизонтах этого важнейшего механизма. Когда-то И. П. Павлов в образной форме назвал афферентную функцию коры «творческая функция».

Приведенный нами материал еще раз подтверждает правильность оценки афферентной функции коры больших полушарий и вместе с тем показывает те огромные горизонты, которые открываются перед учеными и последователями И. П. Павлова в характеристике многообразных нейрофизиологических процессов, синтезированных эволюцией в условных рефлексах.

ОСОБЕННОСТИ АФФЕРЕНТНОГО АППАРАТА УСЛОВНОГО РЕФЛЕКСА И ИХ ЗНАЧЕНИЕ ДЛЯ ПСИХОЛОГИИ *

Как известно, школа И. П. Павлова проявляет неизменный интерес к проблемам психологии, особенно к тем вопросам, которые имеют пограничное значение для физиологии высшей нервной деятельности.

На протяжении всего периода развития учения об условных рефлексах И. П. Павлов много раз выступал с докладами на конгрессах психологов и показал, насколько велика роль разработанного им нового раздела физиологии в материалистической расшифровке сложных явлений психической жизни человека. В особенности, конечно, он подчеркивал значение открытого им условного рефлекса для физиологического понимания теории ассоциаций в психологии. Именно этому вопросу должен был быть посвящен его несостоявшийся доклад на Международном психологическом конгрессе в Мадриде в 1936 г.

Учение об высшей нервной деятельности, дополненное учением о взаимодействии первых и вторых сигналных систем, позволило еще глубже войти в сложные процессы той высшей нервной деятельности, которая является специфической для человека, т. е. высшей нервной деятельности, выявляемой через речь и мышление. Однако, чем больше и точнее входит физиология высшей нервной деятельности в явления психической деятельности человека, тем больше он убеждается в том, что понятие условного рефлекса, как универсальное физиологическое понятие, должно и дальше обогащаться новыми фактами, обликающими его в чисто психологическими понятиями. Со своей стороны психология, вооруженная всеми достижениями современной физиологии мозга и особенно достижениями в области высшей нервной деятельности, должна пересмотреть свои основные понятия под углом зрения этих достижений. Иначе говоря, действительный успех в построении материалистической психологии может прийти только в том случае, если физиолог и психолог будут направлять свои изыскания в соответствии с общей совместно формулируемой задачей.

* Вопросы психологии. 1955. т. 6, с. 16—38. (Доклад на Совещании по психологии 1—6 июля 1955 г.)
Особыми афферентного аппарата условного рефлекса

Мы пока еще далеки от такой организованной и комплексной разработки основных понятий психологии. Однако есть одна форма совместных усилий, которая может быть с полной привлечена к разрешению этой важной в методологическом отношении задачи, это — совместные совещания и конгрессы психологов и физиологов.

Пусть это является пока что первым этапом в разрешении волнующих физиолога и психолога проблем, однако, как показал опыт выступлений на подобных конгрессах самого И. П. Павлова, несомненно, приводит к положительным результатам. Именно благодаря этим выступлениям и во всем времени можно заметить улучшение условные вопросы физиологии и психологии, ученый о высшей нервной деятельности стало основой для разработки материалистической психологии.

Принимая на себя честь сделать научный доклад на Совещании психологов, я, естественно, поставил перед собой вопрос: какой же из многих узловых вопросов физиологии и психологии должен стать предметом моего сообщения для того, чтобы была оправдана сама задача комплексной связи физиологии и психологии?

О решающей роли афферентных систем в нервной деятельности

Многолетний опыт мой и моих сотрудников по изучению поведенческих актов животного убедили меня, что таким узловым вопросом может быть универсальная и решающая роль афферентной функции организма в формировании его высших приспособлений до психических актов выключительно.

В самом деле, едва ли можно найти какой-либо приспособительный акт животного или человека, в котором бы не выступала на первом план роль афферентных импульсаций, вызываемых раздражаемыми агентами внешнего мира. Комбинируя в самых разнообразных сочетаниях, афферентные импульсации осуществляют постоянный контроль над тем, чтобы не только делать в данный момент центральная нервная система и какой-то рабочей возбудженной должен сложиться при данной внешней ситуации, чтобы животное могло приспособиться к ней наивыгоднейшим образом.

Эта общая роль афферентной функции много раз и в ответной форме была формулирована И. П. Павловым начиная с 1911 г., когда он излагал свои представления о пищевом центре.

Уже тогда наметилось его мнение о решающей роли афферентного отдела центральной нервной системы, впоследствии на протяжении всей собственной творческой деятельности он не раз возвращался к этой мысли. В 1911 г. он писал: «Я думаю, что главный центр тяжести нервной деятельности заключается именно в носореждающей части центральной станции; тут лежит основание прогресса центральной нервной системы, который осуществляется головным мозгом, большими полушариями; здесь основной орган того совершеннейшего уравновешивания внешнего мира, которое воплощает собой высшие животные организмы. Часть церебральная — простейшая — самоотделившаяся» (Павлов, Поли. собр. соч. 1949, Т. 3, кн. 1).

В дальнейшем он неизменно придерживался этой точки зрения, и, в конце концов, фактический материал высшей нервной деятельности рассматривал в соответствии с нею. Можно поэтому опустить его многочисленные высказывания по этому поводу. Однако его последняя формулировка должна быть обязательно здесь приведена, поскольку в ней дается дальнейшее углубление этой идеи и поскольку она послужит нам отправным пунктом для дальнейших изысканий в этой области.

Разбирая отдельные проблемы высшей нервной деятельности, И. П. Павлов скажет: «Если всю центральную нервную систему делить только на две половины — афферентную и эфферентную, то мне кажется, что кора полушарий представляет собой хорошо развитый афферентный отдел. В этом отделе исключительно происходит высший анализ и синтез проприосенных раздражений, и здесь уже готовы комбинации расправленные и пораженные (подчеркнуто мое. — А. А.) нацеливают в афферентный отдел. Иначе говоря, только афферентный есть активный, так сказать, творческий отдел, а эфферентный — лишь пассивный, нецеленаправленный» (Павлов, Поли. собр. соч. 1949, Т. 3, кн. 2, с. 104—105).

Несколько позднее И. П. Павлов еще более определенно указал на то, что наличие афферентных импульсаций является «необходимым условием» регулирующего влияния центральной нервной системы на периферические органы.

Таким образом, мы видим, что в концепции И. П. Павлова о целистой деятельности организма афферентная часть нервной системы, т. е., в конце концов, наличие постоянных афферентных импульсаций с периферии, занимала центральное место. Интересно, что сравнительные количественные морфологические исследования нервных волокон хищников показали, что чувствительных волокон в сумме всегда в 3—5 раз меньше, чем двигательных. Это обстоятельство лишний раз подчеркивает универсальное значение функции аферентных волокон.

Однако с изучением универсального значения афферентного отдела центральной нервной системы возникают несколько вопросов.

Прежде всего бросается в глаза явное несоответствие между этой концепцией и рефлекторной теорией Декарта. В самом деле,
какую роль Декарт отводит афферентному отделу центральной нервной системы? Как следует из общей схемы дуги рефлекса, афферентная импульсация всегда играет в ней роль только пускового стимула, то есть, этот стимул может быть менее сложным или более сложным, но по своему смыслу дуга рефлекса он непременно является только началом толчка к развитию того или другого рефлекторного действия. Таким образом, для развития рефлекторного действия, всегда целесообразно приспосабливать организм к окружающим условиям, по концепции Декарта, необходим только афферентный стимул, и этим, в сущности, и ограничиваются, но Декарту, роль афферентной системы в формировании приспособительных актов животных и человека.

Явное несоответствие с теми формулами И. П. Павлова, которые нами были приведены выше и по которым афферентной системе приспосабливается решающая роль в формировании «комбинаций возбуждений и торможений».

В чем глубокая суть этого противоречия? Она заключается, прежде всего, в том, что первоначальная рефлекторная схема, предложенная Декартом («дуга рефлекса»), оказалась явно недостаточной, чтобы объяснить весь разнообразный фактический материал, полученный, особенно в школе И. П. Павлова, при изучении физиологии приспособительного поведения целого животного.

Введя внуру в науку понятие внешнего стимула, как фактора, обусловливающего приспособление животного к внешнему миру, Декарт сослужил большую службу прогрессу материалистических знаний о человеке. Всему большому количеству «спонтанных» и «начальных» случаях он поставил на первый план материальное воздействие внешних агентов на нервную систему животных и человека. Этим самым он установил детерминистическую взаимосвязь поведения животных от изменений внешнего мира.

Именно эту сторону в рефлекторной теории Декарта принадлежность И. П. Павлов, считая ее «научной», поскольку она совершенно отвечает требованиям закона причинности в жизни организмов. Однако, установив значение начального внешнего стимула для рефлекторных ответов животного, Декарт совершенно обогнал молчаливым вопрос: почему ответ целесообразен? Почему стимул приводит к возникновению тех или иных цепи иннервационных ответов и не в другом? Эти вопросы Декарт перед собой не ставил, как не поставил он и вопроса о том, как организм исправляет ошибку в том случае, если рефлекторный ответ не дал приспособительного эффекта.

Являясь по своему мировоззрению дуалистом, Декарт оставил вопрос о целесообразности рефлекторного ответа на долю высшего разума и этим самым на много лет определил всю судьбу изучения сложных приспособительных актов.

Можно сказать без преувеличения, что на протяжении всего доаванскового периода развития физиологии нервной системы углубляла и уточняла анализа процессов, составляющих «дугу рефлекса», и ни разу не пытался дать физиологическую трактовку самого факта целесообразности рефлекторного ответа. Вывод в процессе приобретения новых рефлекторных актов — условных рефлексов — факт подкрепления, И. П. Павлов тем самым коренным образом изменил всю судьбу изучения сложных приспособительных актов животного.

В этом факте и лежит разрешение того противоречия, которое возникает в связи с высокой оценкой И. П. Павловым решающей роли афферентных импульсаций в формировании сложных поведенческих актов.

Значительное количество исследований, проведенных моими сотрудниками на протяжении 25 лет, убедило нас, что разрешение этого противоречия надо искать не в начальной части «дуги рефлекса» — у его побудительного стимула, а на другом конце рефлекса, т. е. у самого рефлекторного действия. Именно к нему в основном относится все то, что И. П. Павлов сказал о решающей роли рефлекторных актов в подводе нервной системы животного к интересам целого организма, т. е. то, что в сущности и заслуживает эпитета «творческий».

Рефлекторная теория Декарта предполагает, что рефлекторный ответ организма является целесообразным с самого начала, его приспособленность к данным внешним условиям предполагается как нечто само собой разумеющееся. Благодаря этому все внимание физиологии было много лет направлено в сторону уже готовых, сложившихся ранее рефлекторных актов. Однако несоответствие старых представлений о всей сложности приспособительного поведения животного стало особенно вынуждаемым и ясным в тот момент, когда на сцену выступило изучение самого процесса формирования или выработки новых рефлекторных ответов, потребовавших передней подводки рефлекторной системы, с помощью метода подкрепления, что, как известно, и составляет самую суть условного рефлекса. Точное так же недостаточность «классической» рефлекторной теории стала особенно очевидной и в тех экспериментах, где животное в порядке компенсации нарушений функций должно было быть на глазах экспериментатора создавать совершенно новые рефлекторные акты, адекватно приспосабливающие его к новым условиям жизни. Именно это последнее и будет предметом освещения в последующем разделе этого доклада.
Теория обратной афферентации

Начиная с 1930 г. наша лаборатория непрерывно занимается изучением механизмов компенсации нарушенных функций организма. Эта увлекательная проблема наряду с огромной теоретической ее важностью позволяет нам также понять и все те приспособления большого организма, которые создают «физиологическую меру» против болезни и приводят его функциональные особенности в соответствие с новыми условиями. В этом смысле нами широко изучаются компенсаторные приспособления, возникающие при нарушении моторных функций животных в результате различного рода специальных операций, особенно в результате перекрестных анастомозов нервных стволов (Сб.: Проблема центра и периферии. Ред. П. К. Анохин. Горький, 1935).

Как известно, нарушения моторной деятельности компенсируются после целого ряда стадий, в которых животное прибегает к различным приемам, заменяющим нарушенную функцию и дающих ему возможность получить соответствующий приспособительный эффект. Если нарушение недостаточно обширно, то функция восстанавливается в более или менее совершенном виде. Весь процесс восстановления идет обычно с огромным разнообразием попыток исправления дефекта, охватывающих все виды мышц животного.

Как показали наши прямые эксперименты, этот процесс компенсации идет медленнее, если конечность, получившая нарушение, функция в результате перекрестных анастомозов нервов, за ранее деафферентирован или после установившейся компенсации удалить соответствующую кормовую зону (Анохин, Иванов, В кн.: Проблема центра и периферии. Горький, 1935, с. 72).

Особенно отчетливо эта решающая роль афферентных импульсаций с периферии в компенсации процесса выступала в эксперименте Э. А. Асратяна, удаленного полностью кору головного мозга. В этих условиях компенсаторный процесс был полностью невозможен или мог быть весьма ограниченным (Асратян. Физиология центральной нервной системы, М., Изд-во АМН СССР, 1954).

Я не имею в виду в этом докладе излагать всю проблему компенсации функций; это бы заняло нас далеко в сторону. Мне важно сейчас показать, что именно разработка этой проблемы ставила перед нами первоочередной вопрос о недостаточности объяснения процесса компенсации только на основе декартовой схемы «рефлекторной дуги». Эта работа потребовала от нас формулировки дополнительного звена рефлекса в виде постоянно действующей обратной афферентации.

В порядке углубления постановки исследования о конкретных механизмах, поступенно приводящих к компенсации нарушенных функций, мы выдвинули три вопроса, без решения которых не было никакой возможности вскрыть интимные механизмы компенсаторных приспособлений. Эти вопросы следующие:

1) Может ли центральная нервная система начать компенсаторные приспособления без сигнализации о наличии дефекта функции и с помощью каких конкретных афферентных импульсаций эта сигнализация осуществляется?

2) Поскольку все попытки животного компенсировать дефект ориентированы в сторону именно компенсации дефекта, возникает вопрос: какие конкретные физиологические механизмы определяют направление целей компенсаторных приспособлений именно в сторону компенсации дефекта?

3) На основе какой информации центральная нервная система определяет конец приспособительных реакций, т. е. восстановление нарушенных функций; на основе каких механизмов она прекращает дальнейшие попытки восстановления и закрепляет сложившуюся заново систему центральных взаимоотношений?

Достаточно внимательно проанализировать эти три вопроса, чтобы видеть, что более или менее удовлетворительного ответа на них не может быть никакой законченной теории компенсации функций. Только ответ на них, мы сможем построить детерминистически связанную цепь физиологических процессов, направляющих компенсацию от момента наступления дефекта до момента восстановления функции.

Для более подробного ознакомления с разработкой этих трех вопросов на моделях нарушенных функций, я отсылаю читателей к своим последним публикациям на эту тему (П. К. Анохин. «Хирургия», 1954, № 10, № 12).

В настоящее же время я остановлюсь на тех общих закономерностях, которые невзбежно вытекают из наших многолетних исследований, посвященных этому вопросу.

Прежде всего следует указать, что ни одно рефлекторное действие, которое возникает в ответ на сигнализацию о дефекте функции, не может привести к какому-либо положительному эффекту без немедленной обратной афферентации, являющейся показателем достаточной или недостаточной эффективности совершенного рефлекторного действия.

Без этой обратной сигнализации о степени успешности первых рефлекторных ответов центральной нервной системы не может быть никакого восстановления нарушенных функций.

Прежде всего мне хотелось бы оговорить самый термин обратная афферентация, предложенный нами для объяснения непрерывного корректирования процесса компенсации с периферией. Смысл этого термина состоит в том, что афферентная сигнализация, возникающая в результате рефлекторного действия, направлена в сторону именно того комплекса процессов централь-
нной нервной системы, который обусловил на периферии данное действие. Это в подлинном смысле слова «обратная» афферентация, поскольку она направлена обратно по отношению к отдачу овому эффекторному возбуждению, а приходит к нейтральным стимулам. Эти стимулы нейтральные, а реакция происходит в ответ на них. Схематически эти взаимодействия можно изобразить в следующем виде (рис. 1).

Рис. 1. Объяснение в тексте

Возникает естественный вопрос: как широко могут быть рас-пространены эти взаимодействия в сторону нормальной рефлекторной деятельности животных и человека?

В качестве примера прежде всего следует указать на значение факта подкрепления в выработке условных рефлексов различного биологического значения. Вклад само понятие подкрепления, И. П. Павлов совершенно очевидно мыслит себе обратное направление этих афферентных импульсаций, которые возникают от воздействия безусловным раздражителем на различные комбинации рецепторных образований.

В самом деле, как говорит самим смысл этого выражения, «подкреплять» можно только что-то такое, что уже имеет место, существует и является адресатом самого подкрепления. Как видим ниже, таким предшествующим образованием является условное возбуждение в коре головного мозга, точнее, возбуждение коркового представительства безусловного центра, вызванное условным раздражителем.

Таким образом, как выработки, так и последующее существование условного рефлекса мыслить только при постоянном подкреплении его безусловным или при постоянной обратной афферентации. Подкрепление условного рефлекса есть, как известно, биологический феномен, определяющий целесообразность приспособления организма к данным внешним условиям. Подкрепление является фактором, корректирующим это приспособление, и, следовательно, оно является такоо же неотъемлемой частью условного рефлекса, как и любая обратная афферентация в случае последовательных компенсаторных приспособлений является неотъемлемой частью произведённого рефлекторного действия.

С этой точки зрения было бы правильным утверждать, что, введя фактор подкрепления в процесс выработки новых рефлексорных ответов организма, И. П. Павлов тем самым отразил универсальную закономерность в жизни всех организмов, направляющую любую рефлекторную деятельность при любых условиях естественного существования животных. Эту закономерность мы и называем обратной афферентацией, придавая ей корректирующее и поддерживающее значение. В настоящее время нам трудно представить себе какой-либо рефлексорный акт целого животного, который бы заканчивался только эффекторным звеном «дуги рефлекса», как этого требует традиционная декартовская схема.

По допустим, что такой рефлексорный акт есть или нам его укажут. По смыслу рефлексорной деятельности этот акт должен или дать успешный приспособительный эффект, или не дать его. В первом случае данное рефлексорное действие заканчивается и животное должно переходить к следующему звено своему поведению, во втором случае животное предпринимает ряд новых попыток к получению не достигнутого при первом действии положительного эффекта.

Справедливо ли, каким образом первая система животного может обнаружить разницу между двумя возможными эффектами рефлексорного действия?

Можно было бы ответить, что животному не нужно обнаруживать эту разницу. Но такие животные были бы немедленно обучены на вымирание. Следовательно, в этом случае животное не должно (I) получать обратную сигнализацию о том, достигло ли это действие приспособительного эффекта или нет. Только при этом условии, т. е. при наличии постоянной обратной афферентации, сопровождающей, как это, каждый рефлексорный акт, все натуральные поведенческие акты целого животного могут возникать, прекращаться и переходить в другие акты, составляя в целом организованную цепь целесообразных приспособлений к окружающим условиям 1.

В связи с изложенными выше представлениями о необходимости обратной афферентации возникает несколько вопросов, требующих уточнения.

Прежде всего следует определить состав обратной афферентной сигнализации. Первоначально мы не определяли детального состава обратной афферентации и ограничивались общим указанием на то, что она возникает от органов действия. Так как такое общее выражение может не совсем правильно ориентировать исследователей в обсуждении этой важной проблемы, то я позволю себе в настоящий момент формулировать этот вопрос более точно.

1 Как в этом случае, так и во всех других пояснениях «целесообразность» упоминаются нами в широком биологическом смысле, как это было принято И. П. Павловым.
Обратная афференция по самому своему смыслу должна наиболее всесторонне отразить степень успешности данного рефлекторного действия, и, следовательно, ее состав должен находиться в прямой зависимости от того, насколько сложно данное действие, и от того, какими рецепторными поверхностями может быть определен результат этого действия. Обычно все наши акты, как правило, имеют неясную многостороннюю афференцию. Обычно говорят, каждый рефлекторный акт дает в центральную нервную систему целый зал сплетений афферентных волокон, различных по силе, но локализации, по времени возникновения и по скорости распространения по центральной нервной системе. Таким образом, мы имеем в каждом отдельном случае своеобразный афферентный индикатор, который до точных деталей отражает приспособительный эффект данного рефлекторного действия.

Так, например, взятие вилки или ножа сразу же заканчивается комплексом тактильных, температурных, зрительных и кинестетических афферентных разражений, сигнализирующих о конце и об успешности данного рефлекторного действия.

Однако следует иметь в виду, что при большом количестве разнообразных обратных афферентаций при каком-либо рефлекторном действии некоторые из них замираются и на первый план выступают ведущая афференция, т. е. те афферентные импульсы, которые приобретают реперовую значимость. В случае же устранения ведущей афференции на сцену выступают другие рецепторные поверхности, афферентные импульсы от которых раньше не играли решающей роли.

В более сложных актах (например, приход в какую-либо комнату) обратная афференция, сигнализирующая о правильности данного акта, может включать многие афферентные импульсы, как, например, вид комнаты и ее деталей, температуры, запаха и др., насколько кинестетические афференции.

В связи с оценкой состава обратных афференций возникает вопрос и о том, как широко можно применять термин «почувствование» к различного рода рефлекторным актам. Все наши действия по самой своей природе имеют непрерывный и цепной характер. Каждое звено этой цепи, заканчиваясь свойственной ему обратной афференцией, переходит потом в другое. Однако правильная последовательность этих звеньев может быть гарантирована только в том случае, если каждое звено получит в виде «подкрепления» адекватную для него обратную афференцию.

Следовательно, понятие «подкрепление» может быть с полным основанием применено к любому дробному этапу приспособления, который получил соответствующую обратную афференцию.

Понечным этапом всех компенсаторных приспособлений или любого данного ряда рефлекторных актов является достижение основного приспособительного эффекта. Как и все прочие этапы приспособления, этот конечный этап также имеет свое обратную афференцию, которая, однако, отличается некоторыми особенностями. Она не стимулирует нервную систему на формирование новых и новых рефлекторных действий, а как раз обратно: она приостанавливает дальнейшие попытки организации новых рефлекторных актов и закрепляет ту последнюю комбинацию координат в центрах мозга, которая дала на периферии успешный приспособительный эффект.

Эту последнюю обратную афференцию мы в свое время и назвали санкционирующей афференцией, поскольку она в самом деле «санкционирует» последнюю сложившуюся систему взаимоотношений в нервных центрах (Анохин, 1935).

Таким образом, возвращаясь ко всему тому, что мы было сказано ранее в данном разделе статьи, мы можем заключить, что афферентные явления, разыгрывающиеся в копе рефлекторного действия, столь разнообразны, столь значительны для развития целесообразных приспособлений животного и особенно для компенсации функций, что они по праву заслуживают быть выделенными в специальную категорию обратных афференций.

Обратные афференции как универсальное явление в поведении животных есть свойство целостного животного, есть ясное его натуралистическое понимание, оно, естественно, не могут иметь места и привести к какому-либо приспособительному эффекту в условиях визуализации. Именно этим обстоятельством надо объяснить парадоксальный факт, что постоянное корригирующее действие обратных афференций не было и на разу замечено, несмотря на трехсотлетнее изучение развития рефлекторной теории Декарта. Визуализация, которая дала богатые аналитические результаты, нашла устраняла саму возможность открытия обратных афференций, а следовательно, и описания полной архитектуры нервных процессов в приспособительном акте.

Между тем в настоящее время после изучения нами различных форм обратных афференций стало совершенно ясным, что сложившееся к настоящему времени общепринятое представление о цепном рефлексе является недостаточным и требует серьезного изменения.

В самом деле, по существующим представлениям цепный рефлекс состоит в том, что «конец одного действия служит началом для другого». Мы видели, однако, что конец действия никогда не может служить началом для другого действия. Конец действия в одном звене является источником обратной афференции, которая направляется к центрам только что развивающегося рефлекса, и только после этого и в зависимости от того, какие последствия будут иметь в нервных центрах эта обратная афференция, начинает формироваться следующий этап цепного рефлекса (рис. 2).
На рис. 2 представлено сравнительное изображение цепного рефлекса, как он мыслится по обычным представлениям (A), и целень обратных афферентаций, как она представляется нам на основе расширения рефлекторной схемы Декарта (B). Стоит только подумать, что при развитии цепного рефлекса в соответствии со старыми представлениями (A) в каком-нибудь звене

![Diagram](image)

Рис. 2. Объяснение в тексте

эта этого рефлекса произошла неточность рефлекторного акта, как сейчас же станет понятной невозможность применения этой схемы к реальным условиям жизни животного. Никакое исправление этой неточности не было бы возможным.

Развитие теории обратной афференции должно было неизбежно поставить перед нами вопрос: в каком отношении обратная афференция находится к "классической" рефлекторной дуге, в какой степени она ее дополняет и может ли обратная афференция представить собой четвертое звено рефлекса? По сути дела обратная афференция столь же обоснована может стать одним из звеньев рефлекса, как и известные уже его звенья. Она, как мы видим, абсолютно необходима для осуществления целесообразного приспособления и фактически выполняет несущественное в деятельности трех первых звенев, оно столь же постоянна в каждом рефлексорном действии, как и другие его звенья, и, наконец, оно имеет вполне определенное физиологическое и структурное содержание. В силу всего сказанного и не вижу каких-либо серьезных возражений против того, чтобы обратная афференция состояла дополнительное или четвертое звено рефлекса. Такое преобразование декартовой рефлекторной схемы снимает длиний ряд противоречий, уже накопившихся к настоящему времени, а вместе с тем открывает широкие возможности изучения и объяснения сложных форм поведения животных и человека в натуральных условиях существования.

Здесь не лишне будет заметить, что зарубежная мысль в последние годы весьма близко подходит к изложенным выше представлениям, часто даже в весьма сходных выражениях.

Достаточно указать на высказывание Эрдина, который в одной из своих последних публичных лекций (в память Дженсена) деляет попытку понять пластические приспособления животного к окружающим условиям. Подводя итог современным достижениям в области физиологии мозга, он останавливается в перспективе перед сложными формами приспособления животных. Осторожно подходя к предмету, он пишет: «Возможно, целесообразным движением руководит его результаты...» (Adrian, Brain, 1947, v. 70, p. 1).

В этом же направлении делаются отдельные исследования на Международном конгрессе, посвященном "принципам комплексной организации нервной системы" (Adrian.— EEG a. Glin. Neurophysiol., 1955, v. 17, N 2, p. 318). Близко к этим вопросам подходит также и Вагнер в своей монографии "Проблемы и примеры биологической регуляции", где он развивает серотонин и на основании ее пытается понять природу приспособительного поведения (Wagner, Problem and samples of the biological regulation, 1955). Особенно же близко подходит к этому вопросу кибернетики, используя представления об обозрятых связях для регуляции правильности и целесообразности работы как машин, так и человеческого организма. Все эти высказывания появились на много лет позднее наших первых публикаций по данному вопросу и, давая общие догадки, весьма далеки от вскрытия физиологических механизмов. Тем не менее это обстоятельство лишний раз подчеркивает необходимость дальнейшей разработки изложенной выше концепции, сложившейся и выросшей в советских лабораториях.

Я оставляю в стороне второй из поставленных выше вопросов: чем направляются все поиски приспособительных актов в условиях компенсации нарушенных функций? Этот вопрос теснейшим образом связан с дальнейшим развитием наших представлений о физиологических основах целесообразного характера рефлекторных актов, и потому он будет рассмотрен особо в следующем разделе этой статьи.

Теория акцептора действия

Уже на первых шагах разработки санкционирующей афференции как заключительной формы обратной афференции у нас возникли вопросы, которые постепенно пришли к вскрытию особого центрального афферентного аппарата, о котором мы ранее не имели никакого представления.

Если целая серия обратных афференций обязательно сопровождает весь ряд компенсаторных приспособлений до восстановления функций включительно, то неизбежно возникает вопрос: почему центральная нервная система прекращает весь этот ряд компенсаторных приспособлений и организм останавливается именно на последней попытке компенсации? Образно выражаясь, как и по каким признакам организм определяет, что именно эта
Особенности афферентного аппарата условного рефлекса

последняя, т. е. санкционирующая афференция, является дейстивительно такой, которая соответствует необходимым требованиям его приспособления к внешнему миру?

Поскольку этот вопрос является одним из самых важных вопросов для понимания всех памятных особенностей афферентного аппарата рефлекторной деятельности, я позволю еще больше уточнить. Обозначим комплексы обратных афференций, соотносящихся к последующим приспособлениям, соответственно предыдущими символами. Пусть первая недостаточная афференция будет (a+ b+k), вторая — (a+ k+l), третьей — (a+ k+r) и, наконец, санкционирующая афференция — (a+ k+m+ t).

Становится ясно, что при детерминистическом физиологическом состоянии, в котором мы должны задать себе вопрос: какими способами, имеющимися в распоряжении центральной нервной системы, она определяет различие между отдельными эпизодами этой цепи обратных афференций, другими словами, почему животное «знает», что именно последний афферентный комплекс (a+ k+m+ t) является информацией об окончательно восстановленном эффекте или вообще о достижении приспособительного эффекта? Если стоять на строгих детерминистических позициях, то на существо весь имеющийся в нашем арсенале нашей нейрофилософии материала не может дать нам ответ на этот вопрос. В самом деле, для центральной нервной системы жизненного все обратные афференции, в том числе и санкционирующая, есть только комбинации афферентных импульсов, и нет никаких видимых с обычной точки зрения причин, почему она из них стимулирует центральную нервную систему на дальнейшую мобилизацию рефлекторных приспособительных актов, а другая, наоборот, останавливает приспособительные действия.

Допустим, что мы были нередко взять стакан, стоящий на столе с большим количеством посуды. Но при протягивании руки мы по рассеянности взялись за ручку кувшина. Как известно каждому из нас по своему жизненному опыту, допущенная ошибка сейчас же исправляется. Кувшин становится на место, а ручка отскакивает нужный нам стакан.

На каком физиологическом основании мы заметили ошибку и исправили ее? Вид кувшина и прикосновение к его ручке, как вид стакана и прикосновение к нему, есть только сознательность обратных афферентных импульсов, различающихся всего несколькими своими компонентами. Так почему же мы предпочли именно последнюю обратную афференцию, как конечную, т. е. санкционирующую афференцию?

Такие факты определяют всю нашу жизнь, они проявляются в каждом нашем шаге, в каждом акте нашего многообразного поведения.

Из последнего примера становится ясным, что только та обратная афференция прекращает дальнейшие рефлекторные действия, которая соответствует намерению, породившему самый рефлекторный акт, или, выражаясь физиологически, обратная афференция должна соответствовать какому-то заготовленному комплексу возбуждений, возникающему до того, как сформировался сам рефлекторный акт.

В результате подобных рассуждений мы с неизбежностью пришли к выводу, что этот заготовленный комплекс возбуждений, предшествующий рефлекторному действию, должен представлять собой что-то вроде афферентного «контрольного» аппарата, который определяет, в какой степени соответствует ему пришедший в центральную нервную систему датский обратный афференция.

Особенное внимание мы уделили разработке этого вопроса на примере пищевого условного рефлекса и его обратной афференции — подкрепления пищей.

Давно было подмечено, что условное возбуждение, возникающее в коре больших полушарий в ответ на применение данного условного раздражителя, не является таким возбуждением, которое было бы по своему качеству общим для любых условных сигналов. Совокупность внешних признаков поведения указала на то, что характер этого условного возбуждения находится в прямой зависимости от качества подкрепляющего фактора. Самым демонстративным примером этой зависимости является биологическое качество условной реакции в ответ на условное раздражение, подкрепляемое пищей и электрическим током.

В более демонстративной форме эта зависимость видна даже в пределах одного и того же условного подкрепления. Так, например, в лаборатории И. И. Павлова было давно показано, что химический состав условнорефлекторной связи находится в том же отношении к качеству пищевого подкрепления и, следовательно, с характером его природенного действия (Егоров. СПб., 1911).

Именно на этом вопросе сознавания качества безусловного и условного возбуждения выросла теория «субъективности», «предсвятия» и др., которые являются лишь словесными обозначениями общезвестных явлений, но не на шесть не приближают нас к раскрытию его физиологической природы (Hilgard, Marquis, Conditioning and Learning, 1949).

По-прежнему остается нерешенным вопрос: на основе каких же конкретных физиологических механизмов условное афферентное возбуждение в виде секреции и общего пищевого возбуждения возникает на фазе на данный условный раздражитель, оказывается более или менее соответствующим тем эффекторным возбуждениям, которые должны возникнуть впоследствии и от самого подкрепляющего фактора? Если этот вопрос уточнить еще

Для пояснения этого второго вопроса можно предложить следующую простую схему (рис. 3).

![Рис. 3. Объяснение в тексте](image)

Как видно из приведенной схемы, при этом условное раздражение из области соответствующего анализатора распространяется прямо к центру безусловного рефлекса, мы тем самым возвращаемся к тому же предположению И. П. Павлова о механизме замыкания дуги условного рефлекса (рис. 3, I). Как известно, многочисленные последующие экспериментальные данные склонили И. П. Павлова к признанию кортикальной локализации обоих звеньев, замыкающих условную связь. Было принято, что она устанавливается между клетками соответствующего анализатора и клетками коркового представительства безусловного раздражителя. Это положение полностью удовлетворяло всем фактическим материалам лабораторий как самого И. П. Павлова, так и его учеников, а потому стало в настоящее время общепризнанным. Но из этого положения следует, что условное возбуждение соответствующего анализатора может распространяться к безусловному пищевому центру только через его корковое представительство (рис. 3, II, б).

Несмотря на то, что это предположение полностью удовлетворяет нашим представлениям о физиологической архитектуре условного рефлекса и стало уже ходячим, до сих пор не было обработано специального внимания на те физиологические последствия, которые с неизбежностью вытекают из принятия этого предположения.

В самом деле, что такое «корковое представительство безусловного центра» по своей физиологической сути? Из самого смысла безусловного подкрепления как афферентного раздражения следуют, что это «представительство» должно иметь афферентный характер, и это целиком соответствует точке зрения И. П. Павлова о коре, как об «изолированном афферентном отделе» центральной нервной системы (см. выше).

Как показали опыты нашего сотрудника И. Н. Лаптева с применением осциллографического метода, сам безусловный раздражитель вызывает довольно сложный афферентный разряд.

В определенной последовательности раздражаются тактильные, температурные и химические рецепторы языка. Причем специфические потоки импульсов с различной скоростью приходят в различные участки коры головного мозга.

Но тогда, сополагая все эти данные, мы должны признать следующее важное для нас положение: всякое условное возбуждение направляется через соответствующий анализатор к этой системе афферентных связей коркового представительства безусловного центра, которая в прошлом много раз возбуждалась безусловным раздражением, а через несколько секунд после входа в нее данного условного возбуждения будет вновь раздражаться тем же безусловным раздражителем. Иначе говоря, при всякой пробе условного раздражителя группа или система корковых клеток, воспроизводящая под действием условного раздражителя вкусовые качества безусловного раздражителя, оказывается возбужденной на несколько секунд ранее, чем туда же придет новое безусловное возбуждение («подкрепление»).

Поэтому представить себе на один момент то своеобразное соотношение первых возбуждений, которое устанавливается в корковом аппарате условной реакции в тот момент, когда в результате безусловного подкрепления сюда же приходят потоки разнообразных, но всегда специфических афферентных возбуждений («обратная афферентация»). Причем надо помнить, что качество этих возбуждений находится в прямой зависимости от своеобразия раздражающего действия данного подкрепляющего агента на зрительные, обонятельные и вкусовые рецепторы.

Эту последовательность в развитии корковых процессов на протяжении 15 с изолированного действия условного раздражителя можно изобразить по фазам, как представлено на рис. 4.

Допустим, что все условные раздражители у данного экспериментального животного на протяжении года подкрепляются 20 с сахарным воронком. Пройдя через все сенсорные центры, это раздражение возбуждает в коре головного мозга определенные афферентные клетки V (тактильные, температурные, химические).
Система взаимосвязей между этими клетками и состоит в дальнейшем афферентное корковое представительство безусловного центра.

В результате длительной тренировки условного рефлекса в коре больших полушарий, точнее, в корковом представительстве безусловного центра, создаются такие соотношения, при которых с каждым новым применением условного раздражителя вместе с афферентами аппаратами условной реакции (секреция, движение, дыхание и др.) одновременно приходит в возбуждение и этот добавочный афферентный аппарат, который точно воспроизводит качественные особенности всегда применявшегося пищевого подкрепления. Как и в случае компенсации, этот корковый афферентный аппарат условного возбуждения оказывается чем-то вроде «контрольного аппарата», который проявляет свое действие через несколько секунд после начала условного раздражителя, т. е. когда уже начинается действие пищевого безусловного раздражителя.

В момент прихода обратных афферентных импульсаций от безусловного раздражителя в кору поведение животного будет обычным и стабильным только в том случае, если безусловное возбуждение будет и по зрительным, и по обонятельным, и по вкусовым качествам в точности соответствовать тому подготовленному афферентному возбуждению, которое за несколько секунд до подкрепления было вызвано к жизни условным раздражите-лем. Окончательные соотношения в афферентном аппарате оказываются в том виде, как они изображены на рис. 4.

Мы полагаем, что эта схема является принципиальной и пригодна для объяснения любого вида выработанного приспособительного поведения.

Как видно из схемы, обратная афферентация, возникающая от действия безусловного раздражителя, должна в точности соответствовать тому добавочному комплексу афферентных возбуждений, который идет в состав условного возбуждения. В случае полного соответствия этих двух возбуждений поведение животного остается нормальным, т. е. пищевое возбуждение животного «удовлетворено», что целиком соответствует ранее выработанным сигнальным соотношениям между условным раздражителем и подкреплением. С этой точки зрения добавочный афферентный аппарат условного рефлекса надо рассматривать как аппарат, производящий окончательную оценку достаточнои или недостаточности того подкрепления или приспособительного эффекта, который последовал за сигнальным раздражителем.

Мысль о наличии такого физиологического аппарата в коре больших полушарий (о «санкционирующей афферентации») возникла у нас впервые еще лет двадцать пять тому назад (П. К. Анохин. В кн.: Проблема центра и периферии. Горький, 1955; Ученые записки МГУ, вып. 111. Психология, т. 2, с. 32, 1947), однако нужны были специальные эксперименты, чтобы можно было убедиться в конкретных физиологических свойствах этого аппарата. С этой целью мы и предприняли ряд специальных экспериментов.

При постановке этих опытов мы рассуждали следующим образом: если заготовленное условное возбуждение афферентных клеток коркового представительства безусловного центра в точности отражает собой свойства будущего обратного безусловного возбуждения и на этой адекватности основано нормальное выработанное поведение животных, то это последнее должно непременно доказаться, если произвести экстремальную подмену безусловного раздражителя. Благодаря такой подмене опережающее условное возбуждение в добавочном афферентном аппарате было бы однородным (на основе прежних подкреплений), а безусловный раздражитель был бы неприятным (1) другого качества, и, следовательно, обратная афферентация от него, приходящая в кору больших полушарий, по составу своих нервных импульсаций не соответствовала бы заготовленному здесь условному возбуждению. Каким будет конечное поведение животного в этом случае? Методически этот замысел был выполнен в нашей лаборатории (Анохин, Стрек. Физиол. журн. СССР, 1933, № 5) на основе двустороннего пищевого подкрепления, которое позволяет вскрыть эти особенности высшей нервной деятельности.
Опыт был поставлен в следующей форме. У животного было выработано всего два условных секреторно-двигательных рефлекса: тон «яя» с подкреплением на правой стороне и тон «фа» с подкреплением на левой стороне станка. Оба рефлекса подкреплялись 20 г хлебных сухарей и были достаточно хорошими рефлексами. Животное после малого скрытого периода бросалось на соответствующую сторону станка и здесь стояло до подачи безусловного раздражителя. В описываемой стадии опытов ошибочные двигательные реакции у животного уже не было.

В начале опытного дня в одну из тарелок левой стороны было положено сухое мясо и, таким образом, на фоне обычных подкреплений хлебными сухарями на одно из очередных применений тона «фа» животное должно было получить мясное подкрепление. Исходя из разобранных особенностей афферентного аппарата условного возбуждения, мы должны принять, что на какой-то момент новые безусловные раздражители, не совпадающие по своим зрительным, обонятельным и вкусовым качествам с уже возникшим условным раздражением, должны повести сначала к несовпадению двух раздражений, а затем и к развитию ориентировочно-исследовательской реакции. Эта последняя должна быть тем более выражена, чем значительнее совпадение заготовленных условных афферентных возбуждений и наличных афферентных возбуждений от подлинного безусловного раздражителя.

В самом деле, при такой подаче безусловного раздражителя, как правило, возникает орентировочно-исследовательская реакция, которая в зависимости от силы раздражающего действия экстренно примененного безусловного раздражителя переходит или в активную пищевую реакцию (при подаче хлеба мясом), или в задержку пищевой реакции и даже в отказ от еды (при переходе от мяса к хлебу). Описываемым нами опыт должен был наблюдать обе формы реакции и особенно отчетливо вторую из них, которую мы и опишем здесь ввиду ее важности более подробно.

После того, как животное экстренно получает мясо и после кратковременной ориентировочно-исследовательской реакции с желанием его съесть, его обычное стереотипное поведение в тех же условиях эксперимента резко изменяется.

Прежде всего оно не уходит, как обычно, от кормушки на середину станка, и продолжает сидеть около кормушки, из которой только что получило экстренное мясное подкрепление. В дальнейшем на протяжении некоторых дней поведение животного имеет вполне определенное физиологическое содержание, придавая ему экспериментальную компактность и свидетельствующий на станок, оно сейчас же направляется к левой кормушке, т. е. к той, где один раз получило мясо. Здесь проявляется подчеркнутую исследовательскую реакцию, упорно обнюхивая кормушку.

Дальнейшее поведение животного дает возможность с достаточной полнотой понять физиологическое содержание этого поведения.

Как только дается условный раздражитель, независимо от того, с какой стороны станка этот раздражитель условно связан, животное немедленно бросается к левой кормушке и там стоит до подачи корма. Такая реакция возникает как на применение тона «фа» (левая сторона), так на применение тона «яя» (правая сторона). Наличие подчеркнутой доминантности всей этой системы возбуждений, которая определяет реакцию животного на левую сторону станка и которая была усиlena подкреплением мясом. Последнее мясо создало явное доминирование всей левой реакции. Самый факт создания такой упорной доминанты от одного экстренного кормления мясом представляет собой большой интерес для характеристики соотношения условного и безусловного рефлексов, однако нас сейчас интересует не это обстоятельство, а другое.

Как мы уже сказали, в этом периоде работы на применение тона «яя» (для правой стороны) животное бежит в левую сторону и стоит там до подачи корма. Однако, как только подается чашка с обычными хлебными сухарями, животное отворачивается и отказывается от еды.

В дальнейшем повышенное вначале пищевое возбуждение собаки снимается, условная секреция уменьшается, а временами даже совсем исчезает. Собака при этом впадает в ясное невротическое состояние.

Постарайтесь представить себе всю совокупность физиологических соотношений, по которым могла развиваться такая реакция.

Сам факт двигательной реакции на левую, «мясную» сторону через 20 дней после однократного подкрепления мясом показывает, что одно экстренное подкрепление мясом создало доминантное, нейтральное в определенной системе отношений на целых 20 дней. Однако этого обстоятельства было бы достаточно для того, чтобы заключить о том, какого качества акцептор действия подготовлен к данному условному возбуждению: по своим афферентным качествам он должен в точности соответствовать раздражению анализаторов животного мясными сухарями. Прямым подтверждением этого предположения является отказ животного от еды хлебными сухарями. Таким образом, наличие двигательной реакции с явной доминантностью в «мясную сторону» и последующий отказ от еды хлебными сухарями — все это говорит о том, что в соответствии между дополнительным афферентным комплексом условного возбуждения и обратной связью реализации от реального безусловного подкрепления является важнейшим фактором, определяющим поведение и состояние животного.
В сущности, все виды выработанных условнорефлекторных актов совершаются с обязательным взаимодействием афферентного аппарата условного рефлекса и обратных возбуждений от поддерживающих агентов. Если эта встреча обнаруживает адекватность обоих возбуждений друг другу, то поведенческий акт животного сапциционируется, закрепляется. Если же обратное возбуждение не в форме возбуждения этого афферентного аппарата, то немедленно возникает ориентировочно-исследовательская реакция, которая, максимальная собирала афферентную функцию коры больших полушарий (включением и усилием возбуждений всех анализаторов), приводит к организации новых комплексов афферентных возбуждений. В результате этого происходит непрерывное использование все более и более совершенных цервицефальных усилий. Эти «пробы» происходят до тех пор, пока обратная афферентация от какого-то очередного действия не окажется полностью адекватной тому комплексу афферентных возбуждений, который возник в самом начале данного поведенческого акта.

Возвращаясь к опытом с подвешенным безусловным подкреплением, мы должны добавить, что необходимость соответствия этих двух возбуждений делается особенно очевидной там, где животное произывает подвешенную ориентировочно-исследовательскую реакцию и даже отказывается есть мясо, если только оно экстерьерно подставлено на место обычного подкрепления хлебом (наблюдение И. А. Заччиной).

Законно спросить, чего же нехватало животному, чтобы так просто и сразу сесть мясо, как оно до этого съедало хлебные сухари? Ясно, что такая реакция животного могла развиться только потому, что мясо не соответствовало чему-то. Но вот вопрос: чему? Теперь мы уже знаем механизм этого несоответствия: совокупность признаков мясо — вид, запах, как признаков безусловного раздражителя, придан к коре головного мозга в виде специфических нервных импульсаций, оказывалась неадекватной для того заготовленного афферентного возбуждения, которое возникало уже в самом начале действия условного раздражителя и полностью соответствовал всем афферентным признакам ранее присутствующего хлеба. Следовательно, в описанной форме эксперимента мы нарушили те адекватные соотношения, которые после многих подкреплений установились между добавочным афферентным комплексом условного возбуждения и обратной афферентацией, всегда возникающей от еды хлеба.

В этих экспериментах нами было точно установлено, что уже в период изолированного действия хорошо затверченного условного раздражителя в коре головного мозга собаки наряду с процессами, определяющими экстенсивные процессы условной реакции (секретия, дыхание, движение и т. д.) возникает и добавочный комплекс афферентных слоев от прежних подкреплений. Все
ных результатов совершенного рефлекторного действия», однако для простоты обречения мы остановились на сокращенном выра
ражении «акцептор действия». Понятие «акцептор» наиболее точно отражает собой смысл всех экспериментальных данных, по-
лученных нами и нашими сотрудниками начиная с 1930 г., по-
скольку латинское «ассертате» соединяет в себе два смысла: при-
нимать и одобрять.

Мы оставляем сейчас в стороне вопрос о том, в какой степени предложенные нами термины удачны. В настоящий момент нам важно отметить, что этим термином мы обозначили вполне реаль
ный физиологический аппарат, выполняющий функцию оценки корой головного мозга результатов любого рефлекторного акта, любимого приспособительного действия целого животного. Образуя в
под влиянием промышленных воздейсвий и составляя часть вейского условного возбуждения и поведенческого акта, акцептор действия выполняет решающую функцию приспособительного по
веденения; на основе получения разнообразных импульсаций с периферии благодаря ему определяется степень точности и до
статочности выполненных актов по отношению к исходным по
будительным раздражителям.

Если, например, на нервную систему животного подействовал условный раздражитель, всегда подкрепляющийся мясом, то акцептор действия, складывающийся уже в начале действия услов
ного раздражителя (см. рис. 4), т. е. задолго до самого подкрепле
ния, определяет затем, в какой степени полученное подкрепле
ние соответствует прежнему афферентному опыту животного.

Можно привести также пример из нашей повседневной жизни: если человек, сидящий в кабинете, задумал почему-либо перейти в столовую, то в тот же самый момент в его коре больших подушечек воспринимается полный афферентный комплекс всех признаков и раздражений, полученных в прошлом от столовой (акцептор действия). И поэтому, придя в столовую и получив от нее определенную сумму раздражений в виде обратных афферен
tаций, полноценно сонацдающихся с уже ранее образованным акцептором действия, человек переходит к следующему этапу своего поведения.

Таким образом, то, что по рассеяности человека пропал не в столовую, а на кухню или в ванную комнату, совокупность всех внешних раздражений от обстановки кухни или ванной комнаты такова, что эти раздражения, придя в кору головного мозга, не
медленно вызывают совпадение с акцептором действия, харак
терным для столовой и ванной в коре головного мозга в тот момент, когда человек был еще в кабинете. В результате этой диссоциации между заготовленным добавочным афферентным компонентом и обратными афферентациями от конца неправильно
gо действия у человека немедленно возникает ориентировочно

исследовательская реакция и он исправляет ошибку, т. е. приво
дит в соответствие заготовленное афферентное возбуждение с подкрепляющими действиям обстановки столовой и целом.

Как видно из этого последнего примера, наличие добровольного афферентного комплекса при любом нашем действии является единственной и универсальной причиной, предупреждающей нас от ошибок или позволяющей нам исправить уже допущенные нами ошибки. И мы не видим пока никаких других возможностей объяснить на физиологическом основании, почему человек, поже
лавший пройти в столовую, но ошибочно присшедший в ванну, обнаруживает ошибку своего поведения.

Эта закономерность столь универсальна и имеет столь решаю
щее значение для понимания поведения животных и человека, что, естественно, она не могла ускользнуть от внимания исследо
вателей, которые в разное время и в различной форме неизменно встречались с необходимостью ее расшифровки.

Прежде всего еще раз следует указать, что самый факт «под
крепления», имеющий универсальное значение для учения о высшей нервной деятельности, является выражением этой зако
номерности. Именно благодаря дополнению рефлекса подкрепле
нием в учении об условных рефлексах был дан коренной преобразование рефлекторной теории Декарта.

Точно так же закон эффекта, предложенный в свое время Торндайком для феноменологической оценки поведения живот
ных, но уже в другом смысле, является верным, а не верным, утверждением, что есть возможность (Thordîcke, 1935). Сюда же надо отнести и выскакивание Юк сов о «представле
ниях» у животных, послужившее ему основой для идеалистиче
ских построений (Yekùhül, 1928). Несомненно, к этой же проб
леме относится и догадка Эрдина о том, что действием, возможн
но, «руководит его результаты» (Adrian — Brain, 1947, 70, № 4). Убедительна широко использовалась идея об обратных регуляциях, как в обычных играх, так и в других автоматических устрой
ствах. Нечто и говорить о том, что так называемая навигация Шарпенты является прямым результатом этой закономерно
сти.

У нас в Советском Союзе к этой проблеме в последние годы наиболее активно подошли, с одной стороны, психологи в изуче
нии так называемых установок (Д. Н. Узнаде и его сотрудни
ки), а с другой стороны, физиологическая лаборатория И. С. Бе
ритова в изучении «представления» как фактора, направляющего поведение животных (Беритов. Об основных формах нервой и психической деятельности. М.—Л., Изд-во АН СССР, 1947). Однако ни в одном из указанных выше направлений не было сделано попытка дать физиологическое расшифровку этому фе
номену.
С самого начала работ нашей лаборатории в этом направлении (1932 г.) мы отказались от психологических обобщений этих особенностей высшей нервной деятельности, налож этот регулирующий фактор «саниционирующая афферентация», и, как можно было видеть из изложенного, оказалось, что эта закономерность целиком поддается физиологической трактовке без потери ее синтетической роли в приспособительном поведении животных.

Очень близко к нашему пониманию условного возбуждения подошел в последние годы также и П. С. Купалов, не вскрывая, однако, физиологических механизмов того дополнительного аппарата, который регулирует целесообразное приспособление животных к внешним условиям (Купалов. Журн. высш. нерв. деят., 1955, т. 5, № 2).

Значение изложенной теории для объяснения некоторых физиологических и психических феноменов

Наиболее действенной стороной изложенных нами теоретических представлений об архитектуре добавочного афферентного аппарата всех рефлекторных реакций является то, что они позволяют нам внести ясность в физиологическое содержание в те процессы, которые оставались до сих пор без объяснения.

Так, например, мы уже обращали внимание на вопрос: почему всякий порядок компенсаторных приспособлений при нарушении функции идет всегда в одном определённом направлении, именно к восстановлению функции? Какие механизмы направляют подбор все более и более близких к восстановлению функции рефлекторных актов? Пряжатие представления об акцепторе действия дает ясным весь этот процесс. Схематически не отдельными стадиями приспособления он дан на рис. 6.

На приведенном рисунке под обозначением I дана архитектура нормального рефлекторного акта, как она была представлена во всем предыдущем изложении. Внешний раздражитель вызывает в коре головного мозга одновременное возбуждение всех частей коркового аппарата данного акта. Акцептор действия изображен, как и на предыдущих рисунках, в виде добавочного аппарата с адекватными связями по отношению к вполне определенной обратной афферентации («компенсационная связь»).

Ряд стадий, изображенных под цифрой II, представляет собой постепенное эволюцию приспособительного поведения после наступления дефекта на функцию A. Как видно на первой стадии (а), при действии прежнего внешнего раздражителя в центральной нервной системе формируется прежний комплекс центральных возбуждений как эффекторных, так и акцептора действия. Одначе в силу дефекта в периферическом действии, возникшее рефлекторное действие не является приспособительным, и потому возникает какая-то новая обратная афферентация, которая не совпадает с заготовленным акцептором действия. Несовпадение символически изображено горизонтальными линиями, не проходящими в акцептор действия. Самым значительным результатом этого несовпадения является то, что центральная нервная система, мобилизует все свои ресурсы, строит новую систему центральных возбуждений эфферентного характера (б), полностью оставляя в прежнем виде акцептор действия, поскольку данный раздражитель может быть раздражителем для вполне определенного приспособительного акта. Однако и это второе действие не дает приспособительного эффекта A, и, следовательно, вновь переконструируется картина центральных возбуждений, создается новое приспособительное действие, с новой формой обратной афферентации (в). На схеме II изображен полный ряд таких последовательных приспособлений, связанных с образованием каждого раз новой картины центральных эффекторных возбуждений.

Как показано на схеме, только последняя система центральных возбуждений (г) дала приспособительный эффект A, что и привело к совпадению обратных афферентаций с возбуждением акцептора действия.

В этой схеме следует обратить особенное внимание на два обстоятельства: 1) конечный приспособительный эффект при компенсации дефекта функции, как правило, осуществляется другой системой центральных эффекторных возбуждений, отличной от нормальной, 2) акцептор действия, связанный с особенностями приспособительного эффекта A, остается одинаковым на всем протяжении компенсаторных приспособлений. Это последнее
обстоятельство и является направляющим весь ряд компенсаторных приспособлений. Действие становится «сакцентированым» только в том случае, если обратная афферентация от него оказывается адекватной возбуждением акцептора действия.

Этим самым весь и любой компенсаторный процесс оказывается полностью расшифрованным на физиологическом основании. На таком же основании построено и явление динамической стереотипии.

Особый интерес имеют изложенные нами представления для физиологического анализа специально психологических понятий. Так, например, понятие «значимости» в обучении и в восприятии внешнего мира совершенно очевидно представляет собой один из вариантов совпадения заготовленного условного возбуждения с обратной афферентацией, «значимыми» для этого заготовленного возбуждения.

Я не имею возможности в этом докладе остановиться на работах ряда психологов, доложивших свои интересные исследования на данном совещании (А.Р. Лурия, Б. Г. Анасьев, Н. Ф. Добрынин и многие другие), но почти в каждом докладе можно найти факты, подтверждающие расшифровку изложенных выше теоретических положений.

Все вопросы обучения идут с обязательной корректирующей ролью обратных афферентаций, и только на этом основании и возможно само обучение. Всякое исправление ошибок есть неотъемлемый результат совпадения возбуждений акцептора действия и обратной афферентации от неправильного действия. Вне этого механизма невозможно как обнаружение ошибок, так и исправление ее. Трудно было бы спорить с тем, что практически любое приобретение навыков (речевых, трудовых, спортивных и др.) идет в том порядке, как это было представлено на схеме непрерывного компенсаторного приспособления (см. рис. 6). На особенностях аппарата акцептора действия основаны все виды инструктажа. Невозможно было бы «пойти» что-то, если бы излюбленное предмет всеми афферентными качествами не совпадало с качествами возбуждений заготовленного акцептора действия.

Интересно также отметить, что значительное затвердение и автоматизированные условорефлекторные акты хотя и протекают с участием всех приведенных выше компонентов обратных афферентаций, однако они часто не достигают до осознания и развиваются «бессознательно». Стоит лишь, не совпадать обратной афферентации с заготовленными возбуждениями акцептора действия, как сейчас же весь процесс становится сознательным.

На этом же основании любое автоматизированное действие, встречающее препятствие при своем осуществлении, немедленно делается объектом всесторонней сознательной обработки его, в результате чего и находится выход из сложившейся ситуации.

Наши представления о дополнительных афферентных аппаратах условного рефлекса в настоящем и в полном виде сообщаются мне на совещании по психологии впервые. И потому, естественно, сейчас трудно даже предсказать, сколько широкое применение они найдут при физиологическом анализе специально психологических проблем.

Однако уже имеющийся материал дает мне основание надеяться, что рабочий контакт между физиологом и психологом будет еще более полным и еще более успешным, чем это имело место ранее.